Resolution quiver and cyclic homology criteria for Nakayama algebras
نویسندگان
چکیده
منابع مشابه
On the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملPeriodic Cyclic Homology of Iwahori-hecke Algebras
We determine the periodic cyclic homology of the Iwahori-Hecke algebras Hq, for q ∈ C∗ not a “proper root of unity.” (In this paper, by a proper root of unity we shall mean a root of unity other than 1.) Our method is based on a general result on periodic cyclic homology, which states that a “weakly spectrum preserving” morphism of finite type algebras induces an isomorphism in periodic cyclic ...
متن کاملInvariance and Localization for Cyclic Homology of Dg Algebras
We show that two flat differential graded algebras whose derived categories are equivalent by a derived functor have isomorphic cyclic homology. In particular, ‘ordinary’ algebras over a field which are derived equivalent [48] share their cyclic homology, and iterated tilting [19] [3] preserves cyclic homology. This completes results of Rickard’s [48] and Happel’s [18]. It also extends well kno...
متن کاملAuslander Algebras of Self-Injective Nakayama Algebras
For the Auslander algebras E of self-injective Nakayama algebras, the Δ-filtrations of the submodules of indecomposable projective Emodules are determined, a class of Δ-filtered E-modules without selfextensions are constructed, and the Ringel dual of E is described. Mathematics Subject Classifications: 16G10
متن کاملHopf Algebra Equivariant Cyclic Homology and Cyclic Homology of Crossed Product Algebras
We introduce the cylindrical module A♮H, where H is a Hopf algebra with S2 = idH and A is a Hopf module algebra over H. We show that there exists a cyclic map between the cyclic module of the crossed product algebra A⋊H and ∆(A♮H), the cyclic module related to the diagonal of A♮H. In the cocommutative case, ∆(A♮H) ∼= C•(A ⋊H). Finally we approximate ∆(A♮H) by a spectral sequence and we give an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2020
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2020.01.025